Fourier Transform

Fourier transformation

It transforms between time and frequency domains.

h(t)H(f)

Transfer function

H(f)=h(t)ei2πftdt

Impulse response

h(t)=H(f)ei2πftdf

For general functions, equivalent descriptions in time and frequency domains are based on Fourier and inverse Fourier transformations.

Fourier transformation

S(f)=s(t)ei2πftdt=FT{s(t)}

Inverse Fourier transformation

s(t)=S(f)ei2πftdf=FT1{S(f)}

(notice that the exp with different numbers!)

Use in Computational Neuroscience

the impulse response is important in experimental approach to system identification: Apply sine stimuli and measure S(f),
i.e., gain and phase, for all frequencies f, then you can get s(t).

Special Cases

FT of sine & cosine

Proof
ω=2πfFT{δ(tt0)}=δ(tt0)eiωtdt=eiωt0FT{eiω0t}=eiω0teiωtdt=ei(ω+ω0)t=2πδ(ωω0)

Euler´s formula:

cos(ω0t)=12(eiω0t+eiω0t)sin(ω0t)=12i(eiω0teiω0t)

then, $$FT{\cos(\omega_0 t)}
= \int_{-\infty}^{\infty} \cos(\omega_0 t)e^{-i\omega t}dt \
= \frac{1}{2} (( \int_{-\infty}^{\infty} e^{i\omega_0 t}e^{-i\omega t}dt+
\int_{-\infty}^{\infty} e^{-i\omega_0 t}e^{-i\omega t}dt) \
= \frac{1}{2} ( \int_{-\infty}^{\infty} e^{-i(\omega-\omega_0)t}dt+
\int_{-\infty}^{\infty} e^{-i(\omega+\omega_0) t}dt) \
= \pi (\delta (\omega+\omega_0)+\delta(\omega-\omega_0))$$
Similar for sine (purely imaginary):

FT{sin(ω0t)}=iπ(δ(ω+ω0)δ(ωω0))

Difference of Gaussians (DoG)

A classical model for a radially symmetrical center-surround receptive field is a Difference of Gaussians (DoG), where two Gaussians with different widths are subtracted from each other (Mexican hat model).

FT of Dirac Delta function

s(t)δ(t)=s(τ)δ(tτ)dτ=s(t)δ(ff0)=ei2π(ff0)t dtFT{δ(tt0)}=δ(tt0)ei2πftdt=ei2πft0FT{ei2πf0t}=ei2πf0tei2πftdt=ei2π(ff0)tdt=δ(ff0)

FT of a Gaussian kernel

With a Gaussian G (x; \sigma)=\frac{1}{\sqrt {2 \pi} \sigma} \ exp (- \frac {x^2}{2 \sigma { #2} }) :

FT \{G(x; \sigma) \} = \frac{1}{\sqrt {2 \pi}} \ exp( - \frac{\sigma { #2} \omega { #2} }{2})

FT and Convolution

Convolution in time domain can be converted to multiplication in frequency domain by Fourier transformation.

r(t)=s(t)h(t)R(f)=S(f)H(f)|s(t)|2dt|S(f)|2df